FB pixel

Δ-Y and Y-Δ Conversions

In many circuit applications, we encounter components connected together in one of two ways to form a three-terminal network: the “Delta,” or Δ (also known as the “Pi,” or π) configuration, and the “Y” (also known as the “T”) configuration.


three terminal network

It is possible to calculate the proper values of resistors necessary to form one kind of network (Δ or Y) that behaves identically to the other kind, as analyzed from the terminal connections alone. That is, if we had two separate resistor networks, one Δ and one Y, each with its resistors hidden from view, with nothing but the three terminals (A, B, and C) exposed for testing, the resistors could be sized for the two networks so that there would be no way to electrically determine one network apart from the other. In other words, equivalent Δ and Y networks behave identically.



There are several equations used to convert one network to the other:


Equations

Δ and Y networks are seen frequently in 3-phase AC power systems (a topic covered in volume II of this book series), but even then they're usually balanced networks (all resistors equal in value) and conversion from one to the other need not involve such complex calculations. When would the average technician ever need to use these equations?



A prime application for Δ-Y conversion is in the solution of unbalanced bridge circuits, such as the one below:


prime application for Δ Y conversion

Solution of this circuit with Branch Current or Mesh Current analysis is fairly involved, and neither the Millman nor Superposition Theorems are of any help, since there's only one source of power. We could use Thevenin's or Norton's Theorem, treating R3 as our load, but what fun would that be?



If we were to treat resistors R1, R2, and R3 as being connected in a Δ configuration (Rab, Rac, and Rbc, respectively) and generate an equivalent Y network to replace them, we could turn this bridge circuit into a (simpler) series/parallel combination circuit:


delta network circuit

After the Δ-Y conversion . . .


Δ Y conversion

If we perform our calculations correctly, the voltages between points A, B, and C will be the same in the converted circuit as in the original circuit, and we can transfer those values back to the original bridge configuration.








bridge configuration circuit

Resistors R4 and R5, of course, remain the same at 18 Ω and 12 Ω, respectively. Analyzing the circuit now as a series/parallel combination, we arrive at the following figures:


series parallel combination table
series parallel combination table

We must use the voltage drops figures from the table above to determine the voltages between points A, B, and C, seeing how the add up (or subtract, as is the case with voltage between points B and C):


voltage between points circuit







Now that we know these voltages, we can transfer them to the same points A, B, and C in the original bridge circuit:


original bridge circuit

Voltage drops across R4 and R5, of course, are exactly the same as they were in the converted circuit.



At this point, we could take these voltages and determine resistor currents through the repeated use of Ohm's Law (I=E/R):













A quick simulation with SPICE will serve to verify our work:[spi]


simulation with SPICE circuit
unbalanced bridge circuit   
v1 1 0  
r1 1 2 12       
r2 1 3 18       
r3 2 3 6
r4 2 0 18       
r5 3 0 12       
.dc v1 10 10 1  
.print dc v(1,2) v(1,3) v(2,3) v(2,0) v(3,0)    
.end    
v1            v(1,2)      v(1,3)      v(2,3)      v(2)        v(3)            
1.000E+01     4.706E+00   5.294E+00   5.882E-01   5.294E+00   4.706E+00

Review

  • “Delta” (Δ) networks are also known as “Pi” (π) networks.
  • “Y” networks are also known as “T” networks.
  • Δ and Y networks can be converted to their equivalent counterparts with the proper resistance equations. By “equivalent,” I mean that the two networks will be electrically identical as measured from the three terminals (A, B, and C).
  • A bridge circuit can be simplified to a series/parallel circuit by converting half of it from a Δ to a Y network. After voltage drops between the original three connection points (A, B, and C) have been solved for, those voltages can be transferred back to the original bridge circuit, across those same equivalent points.



 
Lessons In Electric Circuits copyright (C) 2000-2020 Tony R. Kuphaldt, under the terms and conditions of the CC BY License.


See the Design Science License (Appendix 3) for details regarding copying and distribution.


Revised November 06, 2021

 
Use left and right arrow keys to change pagesUse left and right arrow keys to change pages.
Swipe left and right to change pages.\Swipe left and right to change pages.
Make Bread with our CircuitBread Toaster!

Get the latest tools and tutorials, fresh from the toaster.

What are you looking for?