Magnetic Field of an Infinite Current Sheet
We now consider the magnetic field due to an infinite sheet of current, shown in Figure 7.8.1. The solution to this problem is useful as a building block and source of insight in more complex problems, as well as being a useful approximation to some practical problems involving current sheets of finite extent including, for example, microstrip transmission line and ground plane currents in printed circuit boards.
The current sheet in Figure 7.8.1 lies in the
plane and the current density is
(units of A/m); i.e., the current is uniformly distributed such that the total current crossing any segment of width
along the
direction is
.
To begin, let’s take stock of what we already know about the answer, which is actually quite a bit. For example, imagine the current sheet as a continuum of thin strips parallel to the
axis and very thin in the
dimension. Each of these strips individually behaves like a straight line current
(units of A). The magnetic field due to each of these strips is determined by a “right-hand rule” – the magnetic field points in the direction of the curled fingers of the right hand when the thumb of the right hand is aligned in the direction of current flow. (Section 7.5). It is apparent from this much that
can have no
component, since the field of each individual strip has no
component. When the magnetic field due to each strip is added to that of all the other strips, the
component of the sum field must be zero due to symmetry. It is also clear from symmetry considerations that the magnitude of
cannot depend on
or
. Summarizing, we have determined that the most general form for
is
, and furthermore, the sign of
must be positive for
and negative for
.
It’s possible to solve this problem by actually summing over the continuum of thin current strips as imagined above.1 However, it’s far easier to use Ampere’s Circuital Law (ACL; Section 7.4). Here’s the relevant form of ACL:
where
is the current enclosed by a closed path
. ACL works for any closed path, but we need one that encloses some current so as to obtain a relationship between
and
. Also, for simplicity, we prefer a path that lies on a constant-coordinate surface. A convenient path in this problem is a rectangle lying in the
plane and centered on the origin, as shown in Figure 7.8.1. We choose the direction of integration to be counter-clockwise from the perspective shown in Figure 7.8.1, which is consistent with the indicated direction of positive
according to the applicable right-hand rule from Stokes’ Theorem. That is, when
is positive (current flowing in the
direction), the current passes through the surface bounded by
in the same direction as the curled fingers of the right hand when the thumb is aligned in the indicated direction of
.
Let us define
to be the width of the rectangular path of integration in the
dimension and
to be the width in the
dimension. In terms of the variables we have defined, the enclosed current is simply
Equation 7.8.1 becomes
Note that
for the vertical sides of the path, since
is
-directed and
on those sides. Therefore, only the horizontal sides contribute to the integral and we have:
Now evaluating the integrals:
Note that all factors of
cancel in the above equation. Furthermore,
due to (1) symmetry between the upper and lower half-spaces and (2) the change in sign between these half-spaces, noted earlier. We use this to eliminate
and solve for
as follows:
yielding
and therefore
Furthermore, note that
is independent of
; for example, the result we just found indicates the same value of
regardless of the value of
. Therefore,
is uniform throughout all space, except for the change of sign corresponding for the field above vs. below the sheet. Summarizing:
The magnetic field intensity due to an infinite sheet of current (Equation 7.8.9) is spatially uniform except for a change of sign corresponding for the field above vs. below the sheet.
Footnotes
- 1
In fact, this is pretty good thing to try, if for no other reason than to see how much simpler it is to use ACL instead.
Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0
Explore CircuitBread
Get the latest tools and tutorials, fresh from the toaster.