Simple AC Circuits
LEARNING OBJECTIVES
By the end of the section, you will be able to:
- Interpret phasor diagrams and apply them to ac circuits with resistors, capacitors, and inductors
- Define the reactance for a resistor, capacitor, and inductor to help understand how current in the circuit behaves compared to each of these devices
In this section, we study simple models of ac voltage sources connected to three circuit components: (1) a resistor, (2) a capacitor, and (3) an inductor. The power furnished by an ac voltage source has an emf given by
as shown in Figure 12.2.1. This sine function assumes we start recording the voltage when it is
at a time of
A phase constant may be involved that shifts the function when we start measuring voltages, similar to the phase constant in the waves. However, because we are free to choose when we start examining the voltage, we can ignore this phase constant for now. We can measure this voltage across the circuit components using one of two methods: (1) a quantitative approach based on our knowledge of circuits, or (2) a graphical approach that is explained in the coming sections.
(Figure 12.2.1)
Resistor
First, consider a resistor connected across an ac voltage source. From Kirchhoff’s loop rule, the instantaneous voltage across the resistor of Figure 12.2.2 (a) is
and the instantaneous current through the resistor is
(Figure 12.2.2)
Here,
is the amplitude of the time-varying current. Plots of
and
are shown in Figure 12.2.2 (b). Both curves reach their maxima and minima at the same times, that is, the current through and the voltage across the resistor are in phase.
Graphical representations of the phase relationships between current and voltage are often useful in the analysis of ac circuits. Such representations are called phasor diagrams. The phasor diagram for
is shown in Figure 12.2.6 (a), with the current on the vertical axis. The arrow (or phasor) is rotating counterclockwise at a constant angular frequency
so we are viewing it at one instant in time. If the length of the arrow corresponds to the current amplitude
the projection of the rotating arrow onto the vertical axis is
which is the instantaneous current.
(Figure 12.2.3)
The vertical axis on a phasor diagram could be either the voltage or the current, depending on the phasor that is being examined. In addition, several quantities can be depicted on the same phasor diagram. For example, both the current
and the voltage
are shown in the diagram of Figure 12.2.3 (b). Since they have the same frequency and are in phase, their phasors point in the same direction and rotate together. The relative lengths of the two phasors are arbitrary because they represent different quantities; however, the ratio of the lengths of the two phasors can be represented by the resistance, since one is a voltage phasor and the other is a current phasor.
Capacitor
Now let’s consider a capacitor connected across an ac voltage source. From Kirchhoff’s loop rule, the instantaneous voltage across the capacitor of Figure 12.2.4(a) is
Recall that the charge in a capacitor is given by
This is true at any time measured in the ac cycle of voltage. Consequently, the instantaneous charge on the capacitor is
Since the current in the circuit is the rate at which charge enters (or leaves) the capacitor,
where
is the current amplitude. Using the trigonometric relationship
we may express the instantaneous current as
Dividing
by
we obtain an equation that looks similar to Ohm’s law:
(12.2.1)
The quantity
is analogous to resistance in a dc circuit in the sense that both quantities are a ratio of a voltage to a current. As a result, they have the same unit, the ohm. Keep in mind, however, that a capacitor stores and discharges electric energy, whereas a resistor dissipates it. The quantity
is known as the capacitive reactance of the capacitor, or the opposition of a capacitor to a change in current. It depends inversely on the frequency of the ac source—high frequency leads to low capacitive reactance.
(Figure 12.2.4)
A comparison of the expressions for
and
shows that there is a phase difference of
between them. When these two quantities are plotted together, the current peaks a quarter cycle (or
) ahead of the voltage, as illustrated in Figure 12.2.4 (b). The current through a capacitor leads the voltage across a capacitor by
or a quarter of a cycle.
The corresponding phasor diagram is shown in Figure 12.2.5. Here, the relationship between
and
is represented by having their phasors rotate at the same angular frequency, with the current phasor leading by
(Figure 12.2.5)
To this point, we have exclusively been using peak values of the current or voltage in our discussion, namely,
and
However, if we average out the values of current or voltage, these values are zero. Therefore, we often use a second convention called the root mean square value, or rms value, in discussions of current and voltage. The rms operates in reverse of the terminology. First, you square the function, next, you take the mean, and then, you find the square root. As a result, the rms values of current and voltage are not zero. Appliances and devices are commonly quoted with rms values for their operations, rather than peak values. We indicate rms values with a subscript attached to a capital letter (such as
).
Although a capacitor is basically an open circuit, an rms current, or the root mean square of the current, appears in a circuit with an ac voltage applied to a capacitor. Consider that
(12.2.2)
where
is the peak current in an ac system. The rms voltage, or the root mean square of the voltage, is
(12.2.3)
where
is the peak voltage in an ac system. The rms current appears because the voltage is continually reversing, charging, and discharging the capacitor. If the frequency goes to zero, which would be a dc voltage,
tends to infinity, and the current is zero once the capacitor is charged. At very high frequencies, the capacitor’s reactance tends to zero—it has a negligible reactance and does not impede the current (it acts like a simple wire).
Inductor
Lastly, let’s consider an inductor connected to an ac voltage source. From Kirchhoff’s loop rule, the voltage across the inductor
of Figure 12.2.6(a) is
(12.2.4)
The emf across an inductor is equal to
however, the potential difference across the inductor is
because if we consider that the voltage around the loop must equal zero, the voltage gained from the ac source must dissipate through the inductor. Therefore, connecting this with the ac voltage source, we have
(Figure 12.2.6)
The current
is found by integrating this equation. Since the circuit does not contain a source of constant emf, there is no steady current in the circuit. Hence, we can set the constant of integration, which represents the steady current in the circuit, equal to zero, and we have
(12.2.5)
where
The relationship between
and
may also be written in a form analogous to Ohm’s law:
(12.2.6)
The quantity
is known as the inductive reactance of the inductor, or the opposition of an inductor to a change in current; its unit is also the ohm. Note that
varies directly as the frequency of the ac source—high frequency causes high inductive reactance.
A phase difference of
occurs between the current through and the voltage across the inductor. From Equation 12.2.4 and Equation 12.2.5, the current through an inductor lags the potential difference across an inductor by
or a quarter of a cycle. The phasor diagram for this case is shown in Figure 12.2.7.
(Figure 12.2.7)
INTERACTIVE
An animation from the University of New South Wales AC Circuits illustrates some of the concepts we discuss in this chapter. They also include wave and phasor diagrams that evolve over time so that you can get a better picture of how each changes over time.
EXAMPLE 12.2.1
Simple AC Circuits
An ac generator produces an emf of amplitude
at a frequency
Determine the voltages across and the currents through the circuit elements when the generator is connected to (a) a
resistor, (b) a
capacitor, and (c) a
inductor.
Strategy
The entire AC voltage across each device is the same as the source voltage. We can find the currents by finding the reactance
of each device and solving for the peak current using
Solution
The voltage across the terminals of the source is
where
is the angular frequency. Since
is also the voltage across each of the elements, we have
a. When
the amplitude of the current through the resistor is
so
b. From Equation 12.2.1, the capacitive reactance is
so the maximum value of the current is
and the instantaneous current is given by
c. From Equation 12.2.6, the inductive reactance is
The maximum current is therefore
and the instantaneous current is
Significance
Although the voltage across each device is the same, the peak current has different values, depending on the reactance. The reactance for each device depends on the values of resistance, capacitance, or inductance.
CHECK YOUR UNDERSTANDING 12.2
Repeat Example 12.2.1 for an ac source of amplitude
and frequency
Candela Citations
CC licensed content, Specific attribution
- Download for free at http://cnx.org/contents/7a0f9770-1c44-4acd-9920-1cd9a99f2a1e@8.1. Retrieved from: http://cnx.org/contents/7a0f9770-1c44-4acd-9920-1cd9a99f2a1e@8.1. License: CC BY: Attribution
Introduction to Electricity, Magnetism, and Circuits by Daryl Janzen is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.
Explore CircuitBread
Get the latest tools and tutorials, fresh from the toaster.