- Electromagnetics I
- Ch 3
- Loc 3.10
Coaxial Line

Coaxial transmission lines consists of metallic inner and outer conductors separated by a spacer material as shown in Figure 3.10.1
. The spacer material is typically a low-loss dielectric material having permeability approximately equal to that of free space (
) and permittivity
that may range from very near
(e.g., air-filled line) to 2–3 times
. The outer conductor is alternatively referred to as the “shield,” since it typically provides a high degree of isolation from nearby objects and electromagnetic fields. Coaxial line is single-ended1 in the sense that the conductor geometry is asymmetric and the shield is normally attached to ground at both ends. These characteristics make coaxial line attractive for connecting single-ended circuits in widely-separated locations and for connecting antennas to receivers and transmitters.
Coaxial lines exhibit TEM field structure as shown in Figure 3.10.2.

Expressions for the equivalent circuit parameters
and
for coaxial lines can be obtained from basic electromagnetic theory. It is shown in Section 7.14 that the capacitance per unit length is
where
and
are the radii of the inner and outer conductors, respectively. Using analysis shown in Section 7.14, the inductance per unit length is
The loss conductance
depends on the conductance σsσs of the spacer material, and is given by
This expression is derived in Section 6.5.
The resistance per unit length,
, is relatively difficult to quantify. One obstacle is that the inner and outer conductors typically consist of different materials or compositions of materials. The inner conductor is not necessarily a single homogeneous material; instead, the inner conductor may consist of a variety of materials selected by trading-off between conductivity, strength, weight, and cost. Similarly, the outer conductor is not necessarily homogeneous; for a variety of reasons, the outer conductor may instead be a metal mesh, a braid, or a composite of materials. Another complicating factor is that the resistance of the conductor varies significantly with frequency, whereas
,
, and
exhibit relatively little variation from their electro- and magnetostatic values. These factors make it difficult to devise a single expression for
that is both as simple as those shown above for the other parameters and generally applicable. Fortunately, it turns out that the low-loss conditions
and
are often applicable2, so that
and
are important only if it is necessary to compute loss.
Since the low-loss conditions are often met, a convenient expression for the characteristic impedance is obtained from Equations 3.10.1 and 3.10.2 for
and
respectively:
The spacer permittivity can be expressed as
where
is the relative permittivity of the spacer material. Since
is a constant, the above expression is commonly written
Thus, it is possible to express
directly in terms of parameters describing the geometry (
and
) and material (
) used in the line, without the need to first compute the values of components in the lumped-element equivalent circuit model.
Similarly, the low-loss approximation makes it possible to express the phase velocity
directly in terms the spacer permittivity:
since
. In other words, the phase velocity in a low-loss coaxial line is approximately equal to the speed of electromagnetic propagation in free space, divided by the square root of the relative permittivity of the spacer material. Therefore, the phase velocity in an air-filled coaxial line is approximately equal to speed of propagation in free space, but is reduced in a coaxial line using a dielectric spacer.

Exercise
RG-59 Coaxial Cable
RG-59 is a very common type of coaxial line. Figure 3.10.3 shows a section of RG-59 cut away so as to reveal its structure. The radii are
mm and
mm (mean), yielding
nH/m. The spacer material is polyethylene having
, yielding
pF/m. The conductivity of polyethylene is
S/m, yielding
S/m. Typical resistance per unit length
is on the order of
/m near DC, increasing approximately in proportion to the square root of frequency.
From the above values, we find that RG-59 satisfies the low-loss criteria
for
kHz and
for
kHz. Under these conditions, we find
. Thus, the ratio of the potential to the current in a wave traveling in a single direction on RG-59 is about
.
The phase velocity of RG-59 is found to be
m/s, which is about 67% of
. In other words, a signal that takes 1 ns to traverse a distance
in free space requires about 1.5 ns to traverse a length-
section of RG-59. Since
, a wavelength in RG-59 is 67% of a wavelength in free space.
Using the expression
with
/m, and then taking the real part to obtain
, we
m−1. So, for example, the magnitude of the potential or current is decreased by about 50% by traveling a distance of about 70 m. In other words,
for
m at relatively low frequencies, and increases with increasing frequency.
Footnotes
Additional Reading
- “Coaxial cable” on Wikipedia. Includes descriptions and design parameters for a variety of commonly-encountered coaxial cables.
- “Single-ended signaling” on Wikipedia.
- Sec. 8.7 (“Differential Circuits”) in S.W. Ellingson, Radio Systems Engineering, Cambridge Univ. Press, 2016.
Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0
Explore CircuitBread
Get the latest tools and tutorials, fresh from the toaster.